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Abstract
The Laplace probability distribution is a well known composite distribution and mostly called a 
double distribution. The expression “double” is somewhat misleading because it concerns the 
division of the data set in two parts. Other composite probability distributions are not commonly 
dealt with in literature. However, using the Gumbel plotting position as cumulative frequency 
estimator, it is possible to fit data to any composite distribution with more or less success. Not 
only can the well known probability distributions as such be cut into two parts, but also the 
distribution in part 1 can be different from the one employed in the second part (mixed 
composition). The estimation of the distribution parameters can often be done by a 
transformation followed by a linear regression. The fit of the data to the (composite) distribution 
can be further enhanced by raising the data to a power that will have to be optimized, yielding a 
“generalized” probability distribution. Such a kind of transformation is well known from the log-
normal distribution, but it can be employed for all other distributions. The concept of Mirrored 
probability distributions is also not frequently used in literature, but the Burr and Dagum 
probability distributions are an example as one is mirrored with respect to the other. This paper 
will give composite probabilities using the generalized standard and mirrored Gumbel 
distribution,. It will also give examples situations in which composition is advisable. The 
overview and the examples will be presented with the help of the free CumFreqA model 
software, made for the purpose of generalization and composition, as calculations by hand would 
be cumbersome.
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1. Introduction

1.1  Methods of distribution fitting

The following techniques of distribution fitting exist:

 Parametric methods, The parametric methods are: 
o method of moments
o maximum spacing estimation
o method of L-moments
o Maximum likelihood method

 Regression method, using a transformation of the cumulative distribution function so that 
a linear relation is found between the cumulative probability and the values of the data, 
which may also need to be transformed, depending on the selected probability 
distribution. In this method the cumulative probability needs to be estimated by the 
plotting position.

In case the regression method is not applicable, the numerical method of parameter optimization 
can be used instead of the parametric methods.

1.2. The Gumbel plotting position

The Gumbel plotting position (Pp) gives an estimate of the cumulative probability (Cp or 
probability of non-exceedance) for each of the values in a data set. Before the Pp can be 
determined the data set must be arranged in ascending order. Each value Xn in this series with  n 
= 1, 2, 3, . . . .  N (where N is the total number of data)  is given the PP value n / (N+1).

Gumbel (1954, Ref. 1) has shown that Pp is an unbiased estimator of the cumulative probability 
around the mode of the distribution. In literature there exist other estimates, but Makkonen (2006,
Ref. 2) has proved that the Gumbel Pp is the best of all. 

Table 1 shows how in CumFreqA the X-values have been ranked in ascending order and the Pp 
values are determined. Further, the calculated Cp values have been added by fitting a probability 
distribution in a way that will be explained later.
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Table 1. Observed and calculated cumulative
               probabilities
 -----------------------------------------------
   X-value    Cumulative probability (%)  
   Ranked     - - - - - - - - - - - - - - - - - -  
                         Pp          Cp calculated    
 ----------------------------------------------
    18.0             7.69           9.76      
    25.0           15.38         12.30      
    37.0           23.08         21.25     
    47.0           30.77         38.49     
    48.0           38.46         41.13     
    49.0           46.15         44.00     
    51.0           53.85         55.32     
    58.0           61.54         58.93     
    80.0           69.23         70.62     
    98.0           76.92         79.37     
   105.0          84.62         82.37     
   125.0          92.31         89.39      
 ------------------------------------------------

1.3. Generalizaton

The generalization is accomplished by a transformation of the data. A well known transformation
is taking the logarithmic value of the data before applying the normal distribution, obtaining the 
log-normal distribution. When the data set is skew to the right, the normal distribution cannot be 
used because it is symmetrical. However, by employing the logarithmic transformation it may 
happen that the distribution does become normal.

In this article the transformation is realized by raising the data values to the power (exponent) E. 
When E < 1 the effect is similar to taking the logarithmic value. However, because the E value 
may have a large range its versatility is greater than only a single log transformation.

The logistic probability distribution is similar to the normal distribution. By applying the 
generalization, distributions both skew to the left and skew to the right can be transformed into 
normal or logistic distributions (Figure 1, Ref.  3).

1.4. Skewness

The generalized logistic distribution (Ref. 3), depending on whether the exponent E<1, E=1 or 
E>1 yields the results as pictured in figure 1.



     Symmetrical

Figure. 1. Probability density function (PDF) skewed to the left (negative skew, 1st picture), 
symmetrical (central picture), skewed to the right (positive skew, 3rd picture). 
With a value of E>1, the logistic distribution can transform a distribution skewed to the left into 
a symmetrical distribution, while with a value E<1 it can transform a distribution skewed to the 
right into a symmetrical distribution.

In this paper, the Gumbel and the mirrored Gumbel distributions instead of the logistic 
distribution. The standard logistic distribution is symmetrical, but by generalization and the value
of the exponent E (see figure 1) it can become skewed to the left or to the right.

The standard Gumbel distribution is positively (right) skewed, but after generalization with an E 
value less than 1 it can become symmetrical or even left skewed.
The mirrored Gumbel distribution (see next section) is by definition left (negatively) skewed, but 
after its generalization with an E value greater than 1 it can approach the symmetrical normal 
distribution or even a right skewed one.

1.5  Mirrored distributions

The cumulative probability distribution (Pd) function can be written in general terms as:
Cp = f  ( X, A, B,  . . . )

where X is the data value, and A, B . . . are the parameters.

In of case of generalization with the use of an exponent E (section 1.3) the expression for Pp 
becomes:

Cp = f  ( X, A, B, E,  . . . )

The mirrored distribution of Cp (Cm) is simply
Cm = 1 ‒ f  ( X, A, B,  . . . )   or  Cm = 1 ‒ f  ( X, A, B, E,  . . . )

If Cp represents a distribution skewed to the right, then Cm will represent a distribution skewed 
to the left and vice versa.

Well known examples of mirrored probability distributions are the Burr and the Dagum 
distribution.



1.6  Linearization of the standard and mirrored Gumbel distribution

The standard Gumbel distribution can be written as:
Cp = exp[‒exp{‒ (A*X+B)}]

where Cp is the cumulative probability distribution.

Taking the natural log (ln)  of the standard Pp gives:
ln (Cp) = ‒exp{‒ (A*X+B)}   or   ‒ln  (Cp) = exp{‒ (A*X+B)}

Taking the natural log once again yields:
ln {‒ln (Cp)} = ‒ (A*X+B)   or   ‒ln {‒ln  (Cp)} =  A*X+B

Using the plotting position Pp, being an estimator of the cumulative probability Cp, instead of Cp
and setting

D = B + ln {‒ln (Pp)}
we find:

A*X + D = 0
which is the linearized form of the standard Gumbel distribution.

The parameters A and D can now be found from a linear regression so that the standard Gumbel 
distribution is fully defined.

For the mirrored Gumbel distribution a similar procedure can be followed. The only difference is 
the expression for the D value:

D = B + ln {‒ln(1‒Pp)}   instead of    D = B + ln {‒ln (Pp)}

For the generalized forms the only difference is the expression for the linear equation:
A*Z + D = 0  with  Z = X^E 

The exponent E will have to be found by a numerical method maximizing the goodness of fit.

2. Overview of composition with twice the same distribution

Figure 2 gives an overview of the probability distributions used in CumFreqA (Ref. 4) . By 
clicking on a preferred distribution followed by a click on the “Confirm” box will make the 
program do the calculations for that particular program. However, if one selects “Best of All 
Distributions, the program will handle all the distributions and present the best one, but it will 
also give a list of rakings of all the distributions according to their goodness of fit.

The Gumbel standard, the Gumbel generalized, the mirrored Gumbel, and the mirrored Gumbel 
generalized probability distributions are encompassed in this overview.



                                               
Figure 2. List of probability distributions handled in CumFreq

When composed probability distributions are used, the composition consists of the introduction 
of a divide (a separation point or breakpoint) Xs for the X data whereby one group contains the X
values smaller than Xs and the second group the X values larger than Xs.

The composition is useful when the lower X values are generated under conditions different from
the higher ones. For example, the lower rainfalls occur during steady rainy periods while the 
higher values occur more in stormy whether.

The list of composite probability distributions included in CumFreqA is presented in figure 3.



Figure 3. List of composite distributions incorporated in CumFreqA. The composite distribution 
may consist of a distribution of one kind for the lower X values and a distribution of another kind
for the higher X values, but also the composition can be done with one kind of distribution only 
whereby the parameters of the distribution for the lower values are different from those for the 
higher values. 

Please note that, to obtain the list, the option box (orange rectangle) must be set to “Allow a 
composite distribution”. The green rectangle give the user the possibility to determine the number
of intervals for the histogram and probability density function in the output.

The list in Figure 3 consists of two groups. The first group works with standard probability 
distributions while the second group consists of generalized distributions.

In the remainder part of this paper, attention will be paid to the composite standard Gumbel 
distribution, the composite mirrored Gumbel distribution as well as the composite generalized 
Gumbel distribution and the composite generalized mirrored distribution

The composite standard Gumbel distribution can be written as:

Cp = exp[‒exp{‒ (A1*X+B1)}]   when X < Xs
Cp = exp[‒exp{‒ (A2*X+B2)}]   when X > Xs



The parameters A1, B1, A2 and B2 are determined in the same way as the parameters A and B 
for the non-composite (uniform) distribution (Section 1.5) , except that one works with two 
different data sets of the divided X values left and right of the separation point Xs.

For the mirrored and generalized distributions equations like the two previous ones can be simply
formulated according to the principles explained in Section 1.6.

3. Examples from practice

3.1  Left skewed distribution

The data for the left skewed distribution stem from the school test scores of pupils.
As it concerns left (negatively) skewed data, the first trial will be with the mirrored Gumbel 
probability distribution as mentioned in section 1.4

As the mirrored Gumbel distribution is left skewed it will be applied first without generalization.
Figure 4 gives the cumulative probability distribution of test scores of pupils in a school in 
Australia fitted to a mirrored Gumbel distribution. The goodness of fit (coefficient of explanation 
or R-squared) is very high: 0.9976 (practically 100%). More precise versions of the mirrored 
distribution need not be tempted.

Figure 4. The mirrored Gumbel distribution applied to test scores.

The proof that the distribution is skew to the left can be seen in figure 5 in which the interval 
distribution and the frequency density curve are depicted.



Figure 5. Interval frequency and density curve of test scores according to the mirrored Gumbel 
distribution. The distribution is clearly negatively skewed (skew to the left, compare with figure 
1.

Owing the excellent fit, it is not worth to try the generalized or composite versions of the 
mirrored Gumbel distribution.  

It could be that the standard Gumbel distribution, which originally is skew to the right, might also
give a good fit when applied as the generalized version. The result of this effort is shown in 
figure 6.

The generalized Gumbel distribution can be written as:
Cp = exp[‒exp{‒ (A*Z+B)}]   with  Z = X ^ E

In the case of figure 6 we have: A = 0.0170 B = - 0.972 E = 2.55
and the goodness of fit (R-squared) is 0.9958, very close to that of the mirrored version above.

Though not really required the composite generalized Gumbel distribution could be 
experimented. The outcome is depicted in figure 7.



Figure 6. 

The generalized 
Gumbel distribution 
gives an equally 
good fit as the 
mirrored Gumbel 
distribution (figure 
5). Owing to the fact 
that this generalized 
case gives the same 
result as the 
standard case in 
figure 5, the latter 
would be preferable 
as it has less 
parameters

Figure 7.

The composite 
generalized Gumbel 
distribution has a 
separation point at 
Xs=0.60 (green 
dotted line).

The conclusion is the
same as the one 
described in the text 
for figure 7.

The relevant 
equations are given 
hereunder.

With Xs=6.0 (separation point), the composite generalized Gumbel distribution (figure 7) reads:
X < Xs:  Cp = exp[‒exp{‒ (0.099*Z ‒1.27)}]  where  Z = X^1.63
X > Xs:  Cp = exp[‒exp{‒ (0.188*Z ‒2.19)}]  where  Z = X^1.62

The goodness of fit (R-squared) equals 0.9994 This is excellent but only slightly higher than in 
the mirrored Gumbel case (0.9976), and the difference is far from significant. However, the 
density function (figure 8) gives a somewhat better picture than that of figure 5 as here the 
observed value (symbol #) is closer to the to it.



Figure 8. Interval frequency and density function for the composite generalized Gumbel 
distribution showing clearly the skewness to the left.

3.2  Symmetrical distribution

In figure 9 the generalized Gumbel distribution is used to a dataset to a symmetrical distribution. 
Generalization is necessary because the standard Gumbel distribution is positively skewed (skew 
to the right.

The equation of the distribution in this case is:

     Cp = exp[‒exp{‒ (0.0483*X^1.82‒1.29)}] 

where the power 1.82, greater than 1, makes it possible to convert the Gumbel distribution to a 
symmetrical one.

In figure 10, showing the density function it can be seen that the generalized Gumbel distribution 
is able to produce a symmetrical distribution



Figure 9

The generalized Gumbel 
cumulative probability 
distribution fitted to a 
symmetrical data set.

The goodness of fit 
(coefficient of explanation,
R-squared) is 0.9866, 
close to 1 (100%);

Figure 10

The eneralized  Gumbel 
density function 
corresponding to the 
cumulative distribution
in figure 9 is clearly 
symmetrical.

To approach the normal distribution the Gumbel distribution needs a generalization with an 
exponent E greater than 1. So, for the same purpose, the mirrored Gumbel distribution needs an 
exponent smaller than 1.

The equation for the generalized mirrored distribution shown in figure 11 is:
     Cp = exp[‒exp{‒ (‒3.030*X^0.410‒7.14)}] 

where the power 0.410 is smaller than 1 indeed.



Figure 11

The generalized mirrored 
Gumbel cumulative 
probability distribution 
fitted to a symmetrical 
data set.

The goodness of fit 
(coefficient of explanation,
R-squared) is 0.9831, 
close to 1 (100%), just like
the value in Figure 9.
.

Figure 12

The generalized mirrored 
Gumbel density function 
corresponding to the 
cumulative distribution in 
figure 11 is clearly 
symmetrical like figure 10.

It can now be tried to see if the composite (discontinuous) distribution give a still better result, 
even though the previous results were fabulous.

Figure 13 contains the composite generalized Gumbel distribution. The corresponding equations 
read:

X < 7.0 :   Cp = exp[‒exp{‒ (0.117*X^1.38‒1.46)}] 
X > 7.0 :   Cp = exp[‒exp{‒ (0.146*X^1.41‒1.84)}] 



Figure 13 
The composite generalized 
mirrored Gumbel cumulative
probability distribution fitted
to a symmetrical data set. 
The goodness of fit 
( coefficient of explanation, 
R-squared) is 0.9887, close 
to 1 (100%). This value is 
higher than the previous 
ones indeed, but the 
improvement is very small. 
Moreover, there was 
actually not much space for 
improvement as the previous
coefficients were already 
very high.

Figure 14

The composite generalized 
mirrored Gumbel 
probability density function 
clearly reveals the 
discontinuity at the 
separation point Xs = 7.0
And the graph approaches 
the maximum # symbols 
(observed interval 
frequency) nearer than in 
figures 10 and 12 that were 
made for continuous (non-
composite) distributions

In the same way, it could be tried to apply the composite generalized mirrored Gumbel 
distribution in complementation to the  composite generalized standard Gumbel distribution.

However, as the results in both cases are practically the same, the proposed option will not be 
further pursued.



3.3  Right skewed distribution

In this section the maximum monthly rainfalls of October in Surinam will be assessed. As the 
heavy rain storms occur under influence of the tropics while the more gentle rainfalls com from 
the Caribbean, there may be two trends in the probability curve.

First, the rainfall is analyzed without composition, but with generalization, where after it will be 
demonstrated that dividing the curves in two different segments with composition consisting two 
different versions of the same distribution type (Gumbel respectively mirrored Gumbel) will give 
rise to a considerable improvement, a feature that has not happened in the previous examples.

Figure 15 shows the cumulative probability according to the generalized Gumbel distribution, 
followed by figure 16 illustrating the density curve belonging to it.

Figure 15. The generalized Gumbel distribution applied to fit the data on the maximum 1-day 
October rainfall.

The equation for the generalized mirrored distribution shown in figure 15 is:

     Cp = exp[‒exp{‒ (0.6850*X^0.420‒3.35)}] 

and the coefficient of explanation is 0.9796



Figure 16. The interval distribution and the density function belonging to figure 15.

The distribution is so highly skewed to the right that the generalized Gumbel distribution, which 
is based on positive skewness , still needs an exponent much less than 1: E = 0.420.

Therefore it is not worth the trouble to try the generalized Gumbel mirrored distribution that is 
based on negative skewness, because the exponent E would be impossibly small.

The next step is to employ the composite Gumbel distribution, to see if this provides a still better 
result than the generalized distribution. 

Figure 17 illustrates the result of this effort and figure 18 gives the corresponding interval 
distribution and the density function.

X < 74.6 :   Cp = exp[‒exp{‒ (0.0351*X‒1.64)}] 
X > 74.6 :   Cp = exp[‒exp{‒ (0.0160*X)}] 

The goodness of fit (R-squared) equals 0.9904 This is excellent but only slightly higher than in 
the generalized Gumbel case (0.9796), and the difference is not significant. 



Figure 17.

Composite Gumbel 
distribution of monthly 
maximum 1-day 
rainfall (mm) in 
October, Surinam.

The separation point 
Xs equals 74.6 mm 
(green dotted line)

Figure 18.

Interval distribution 
and density function 
belonging to figure 17.

The breakpoint 
(separation point) is 
clearly visible.

Since the insignificant difference in the goodness of fit of the distribution shown in figure 17 with
that of the one shown in figure 15, it will be tried to activate the composite generalized Gumbel 
distribution instead of the composite standard one.

Figure 19 illustrates the result of this effort and figure 20 gives the corresponding interval 
distribution and the density function.

X < 65.0 :   Cp = exp[‒exp{‒ (0.0242*X^1.07‒1.50)}] 
X > 65.0 :   Cp = exp[‒exp{‒ (0.0078*X^1.13‒0.009)}] 



The separation point is Xs  =  65.0 mm is lower than in the composite non-generalized case 74,6 
(figure 17).

The goodness of fit (R-squared) equals 0. 0.9922 (very close to 1 or 100%). This is quite 
excellent but only slightly higher than in the generalized Gumbel case (0.9796) and in the 
composite standard Gumbel case (0.9904). 

Figure 19.

Composite generalized
Gumbel distribution of 
monthly maximum 1-
day rainfall (mm) in 
October, Surinam.

The separation point 
Xs equals 65 mm 
(green dotted line)

Figure 20.

Interval distribution 
and density function 
belonging to figure 17.

.



4. Conclusion

The specialty of CumFreqA to introduce inversion (mirrorization), generalization and 
composition to probability distribution enhances their applicability to a great extent. 

This does not only hold for the Gumbel distribution discussed in this paper or for the logistic 
distribution (Ref. 3), but also for many other types of distributions.
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6. Appendix: Confidence belts

In a number of figures with the cumulative distribution depicted, their 90% confidence belts have
been drawn. The confidence intervals are found from the (relative) standard deviation (Sd) of the 
binomial probability distribution [Ref. A]:

                       Sd = sqrt{Fc(1-Fc)/N},

where Fc is the cumulative (non-exceedance) frequency (0<Fc<1), and N is the  number of data. 

There are only two events: Fc, the non-exceedance, or (1-Fc), the exceedance, reason why the 
binomial distribution is applicable.

The determination of the confidence interval of Fc makes use of Student's t-statistic (t) [Ref A]. 
Using 90% confidence limits the t-value is close to 1.7 when  N>10.

The binomial distribution is symmetrical when Fc=0.5 (in the center of the distribution), but it  
becomes more skew when Fc approaches 0 or 1. Therefore  Fc can be used as a weight factor in 
the assignation of  Sd to U and L (upper and lower confidence limit respectively):
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                          U = Fc + 2*1.7 (1-Fc) Sd
                          L = Fc – 2*1.7 Fc.Sd

[Ref. A] Use of the binomial probability distribution for confidence intervals of  cumulative 
probability distribution functions. On line: https://www.waterlog.info/pdf/binoom.pdf 
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